Basis(基础):
MSE(Mean Square Error 均方误差),
LMS(LeastMean Square 最小均方), LSM(Least Square Methods 最小二乘法), MLE(MaximumLikelihood Estimation最大似然估计), QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率), JP(Joint Probability 联合概率), MP(Marginal Probability边缘概率), Bayesian Formula(贝叶斯公式), L1 /L2Regularization(L1/L2正则, 以及更多的,现在比较火的L2.5正则等), GD(GradientDescent 梯度下降), SGD(Stochastic Gradient Descent 随机梯度下降), Eigenvalue(特征值), Eigenvector(特征向量), QR-decomposition(QR分解), Quantile (分位数), Covariance(协方差矩阵)。Common Distribution(常见分布):
Discrete Distribution(离散型分布):
BernoulliDistribution/Binomial(贝努利分布/二项分布),
Negative BinomialDistribution(负二项分布), MultinomialDistribution(多项式分布), Geometric Distribution(几何分布), HypergeometricDistribution(超几何分布), Poisson Distribution (泊松分布)。Continuous Distribution (连续型分布):
UniformDistribution(均匀分布),
Normal Distribution /Guassian Distribution(正态分布/高斯分布), ExponentialDistribution(指数分布), Lognormal Distribution(对数正态分布), GammaDistribution(Gamma分布), Beta Distribution(Beta分布), Dirichlet Distribution(狄利克雷分布), Rayleigh Distribution(瑞利分布), Cauchy Distribution(柯西分布), Weibull Distribution (韦伯分布)。Three Sampling Distribution(三大抽样分布):
Chi-squareDistribution(卡方分布),
t-distribution(t-distribution), F-distribution(F-分布)。Data Pre-processing(数据预处理):
Missing Value Imputation(缺失值填充),
Discretization(离散化),Mapping(映射), Normalization(归一化/标准化)。Sampling(采样):
Simple Random Sampling(简单随机采样),
OfflineSampling(离线等可能K采样), Online Sampling(在线等可能K采样), Ratio-based Sampling(等比例随机采样), Acceptance-RejectionSampling(接受-拒绝采样), Importance Sampling(重要性采样), MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。Clustering(聚类):
K-Means,
K-Mediods, 二分K-Means, FK-Means, Canopy, Spectral-KMeans(谱聚类), GMM-EM(混合高斯模型-期望最大化算法解决), K-Pototypes,CLARANS(基于划分), BIRCH(基于层次), CURE(基于层次), DBSCAN(基于密度), CLIQUE(基于密度和基于网格)。Classification&Regression(分类&回归):
LR(Linear Regression 线性回归),
LR(LogisticRegression逻辑回归), SR(Softmax Regression 多分类逻辑回归), GLM(GeneralizedLinear Model 广义线性模型), RR(Ridge Regression 岭回归/L2正则最小二乘回归), LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归), RF(随机森林), DT(DecisionTree决策树), GBDT(Gradient BoostingDecision Tree 梯度下降决策树), CART(ClassificationAnd Regression Tree 分类回归树), KNN(K-Nearest Neighbor K近邻), SVM(Support VectorMachine), KF(KernelFunction 核函数PolynomialKernel Function 多项式核函、 Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、 String KernelFunction 字符串核函数)、 NB(Naive Bayes 朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络), LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别), EL(Ensemble Learning集成学习Boosting,Bagging,Stacking), AdaBoost(Adaptive Boosting 自适应增强), MEM(MaximumEntropy Model最大熵模型)。Effectiveness Evaluation(分类效果评估):
Confusion Matrix(混淆矩阵),
Precision(精确度),Recall(召回率), Accuracy(准确率),F-score(F得分), ROC Curve(ROC曲线),AUC(AUC面积), LiftCurve(Lift曲线) ,KS Curve(KS曲线)。PGM(Probabilistic Graphical Models概率图模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网络/信念网络),
MC(Markov Chain 马尔科夫链), HMM(HiddenMarkov Model 马尔科夫模型), MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型), CRF(ConditionalRandom Field 条件随机场), MRF(MarkovRandom Field 马尔科夫随机场)。NN(Neural Network神经网络):
ANN(Artificial Neural Network 人工神经网络),
BP(Error BackPropagation 误差反向传播)。Deep Learning(深度学习):
Auto-encoder(自动编码器),
SAE(Stacked Auto-encoders堆叠自动编码器, Sparse Auto-encoders稀疏自动编码器、 Denoising Auto-encoders去噪自动编码器、 Contractive Auto-encoders 收缩自动编码器), RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机), DBN(Deep Belief Network 深度信念网络), CNN(ConvolutionalNeural Network 卷积神经网络), Word2Vec(词向量学习模型)。DimensionalityReduction(降维):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,
PCA(Principal Component Analysis 主成分分析), ICA(IndependentComponent Analysis 独立成分分析), SVD(Singular Value Decomposition 奇异值分解), FA(FactorAnalysis 因子分析法)。Text Mining(文本挖掘):
VSM(Vector Space Model向量空间模型),
Word2Vec(词向量学习模型), TF(Term Frequency词频), TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率), MI(MutualInformation 互信息), ECE(Expected Cross Entropy 期望交叉熵), QEMI(二次信息熵), IG(InformationGain 信息增益), IGR(Information Gain Ratio 信息增益率), Gini(基尼系数), x2 Statistic(x2统计量), TEW(TextEvidence Weight文本证据权), OR(Odds Ratio 优势率), N-Gram Model, LSA(Latent Semantic Analysis 潜在语义分析), PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析), LDA(Latent DirichletAllocation 潜在狄利克雷模型)。Association Mining(关联挖掘):
Apriori,
FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法), AprioriAll, Spade。Recommendation Engine(推荐引擎):
DBR(Demographic-based Recommendation 基于人口统计学的推荐),
CBR(Context-basedRecommendation 基于内容的推荐), CF(Collaborative Filtering协同过滤), UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐), ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)。Similarity Measure&Distance Measure(相似性与距离度量):
Euclidean Distance(欧式距离),
ManhattanDistance(曼哈顿距离), Chebyshev Distance(切比雪夫距离), MinkowskiDistance(闵可夫斯基距离), Standardized Euclidean Distance(标准化欧氏距离), MahalanobisDistance(马氏距离), Cos(Cosine 余弦), HammingDistance/Edit Distance(汉明距离/编辑距离), JaccardDistance(杰卡德距离), Correlation Coefficient Distance(相关系数距离), InformationEntropy(信息熵), KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)。Optimization(最优化):
Non-constrainedOptimization(无约束优化):
Cyclic VariableMethods(变量轮换法),
Pattern Search Methods(模式搜索法), VariableSimplex Methods(可变单纯形法), Gradient Descent Methods(梯度下降法), Newton Methods(牛顿法), Quasi-NewtonMethods(拟牛顿法), Conjugate Gradient Methods(共轭梯度法)。ConstrainedOptimization(有约束优化):
Approximation Programming Methods(近似规划法),
FeasibleDirection Methods(可行方向法), Penalty Function Methods(罚函数法), Multiplier Methods(乘子法)。 Heuristic Algorithm(启发式算法), SA(SimulatedAnnealing, 模拟退火算法), GA(genetic algorithm遗传算法)。Feature Selection(特征选择算法):
Mutual Information(互信息),
DocumentFrequence(文档频率), Information Gain(信息增益), Chi-squared Test(卡方检验), Gini(基尼系数)。Outlier Detection(异常点检测算法):
Statistic-based(基于统计),
Distance-based(基于距离), Density-based(基于密度), Clustering-based(基于聚类)。Learning to Rank(基于学习的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost; Listwise:AdaRank,SoftRank,LamdaMART。Tool(工具):
MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
以及一些具体的业务场景与case等。